If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+12b-58=0
a = 1; b = 12; c = -58;
Δ = b2-4ac
Δ = 122-4·1·(-58)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{94}}{2*1}=\frac{-12-2\sqrt{94}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{94}}{2*1}=\frac{-12+2\sqrt{94}}{2} $
| -3x-2(6x-4)=113 | | 12*c=248 | | 12n-9=9n+3 | | |2x+8|=10 | | 11n+11=22n-22 | | 3n2+6n+3=0 | | 2(2x+10)=5x-2(x+5) | | 4^x3=64 | | 6x+2=11x+47 | | 3x+20=22 | | 2x=6+6x+-1 | | 4x+2+5x-12=125 | | (2x+30)=360 | | 2w^2-72-7w=0 | | X-(0.11/x+25)=3600 | | 5(x-4)-(x-6)=-2 | | 10x-9-9x=8 | | 17x-19-16x=1 | | 3(2y-3)=-4+21 | | 40p+10=10 | | x=713/4 | | -5y+4(-4y-7)=-1-8(6-y) | | X-0.11/x=3625 | | F(n)=-4(0.5)^n-1 | | 3-5x+9=32 | | –6+9k=10k | | 7y-6(4y-6)=2 | | –10+z=3z | | -2(x-5)-8=6(x+1) | | 2x+1+30=90 | | g+5=15|3 | | 3a^2+5a^2= |